Confusion Matrix
| Actual/Predicted | Negative | Positive |
| Negative | TN | FP |
| Positive | FN | TP |
- Accuracy
- fraction of correctly identified positives & negatives
= TP + TN / TP+TN+FP+FN - Sensitivity/ Recall / Hit Rate / True Positive Rate (TPR)
- # of actual Yeses correctly predicted / Total # of actual Yeses
= TP / (TP+FN) - Specificity / Selectivity / True Negative Rate (TNR)
- # of actual No's correctly predicted / Total # of actual Nos
= TN / (TN+FP) - Precision / Positive Predictive Value
- Probability that a predicted Yes is actually a Yes.
= TP / (TP+FP) - Score=400+(20∗log(odds)log(2))
- More metrics.
No comments:
Post a Comment